Particle Physics from Tevatron to LHC: what we know and what we hope to discover

Beate Heinemann, UC Berkeley and LBNL Università di Pisa, February 2010

Outline

Introduction

- Outstanding problems in particle physics
 - and the role of hadron colliders
- Current and near future colliders: Tevatron and LHC

Standard Model Measurements

- Hadron-hadron collisions
- Cross Section Measurements of jets, W/Z bosons and top quarks

Constraints on and Searches for the Higgs Boson

- W boson and Top quark mass measurements
- Standard Model Higgs Boson

Searches for New Physics

- Higgs Bosons (beyond the Standard Model)
- Supersymmetry
- High Mass Resonances (Extra Dimensions etc.)

First Results from the 2009 LHC run

Low Mass: m_H<140 GeV

- Tevatron:
 - **■**WH(→bb), ZH(→bb)
- LHC:
 - ■H(\rightarrow γγ), qqH(\rightarrow ττ/WW*)

Higgs Production: Tevatron and LHC

dominant: gg→ H, subdominant: HW, HZ, Hqq

Higgs Boson Decay

- Depends on Mass
- M_H<130 GeV/c²:
 - bb dominant
 - WW and ττ subdominant
 - γγ small but useful
- M_H>130 GeV/c²:
 - WW dominant
 - ZZ cleanest

WH-Ivbb

- WH selection:
 - 1 or 2 tagged b-jets
 - electron or muon with p_T > 20 GeV
 - E_T^{miss} > 20 GeV

Looking for 2 jets

Expected Numbers of Events

for 2 b-tags:

WH signal: 1.6

Background: 110±25

WH Dijet Mass distributions

- Use discriminant to separate signal from backgrounds:
 - Invariant mass of the two b-jets
 - Signal peaks at m(bb)=m_H
 - Background has smooth distribution
 - More complex:
 - Neural network or other advanced techniques
- Backgrounds still much larger than the signal:
 - Further experimental improvements and luminosity required
 - E.g. b-tagging efficiency (40->60%), *NN/ME selection*, higher lepton acceptance
- Similar analyses for ZH

Tevatron Combined Status

Tevatron Run II Preliminary, L=2.0-5.4 fb⁻¹

- Combine CDF and DØ analyses from all channels at low and high mass
 - Exclude m_H=163-166 GeV/c² at 95% C.L.
 - m_H=120 GeV/c²: limit/SM=2.8

Higgs at Low Mass: Tevatron vs LHC

$$M_H = 120 \text{ GeV}, 30 \text{ fb}^{-1}$$

WH channel:

- Much larger backgrounds at LHC than at Tevatron
- Not the best channel at the LHC! => use other ones

Low Mass Higgs Signals at LHC

- Main observation channels:
 - H→γγ
 - qqH→qqττ
 - $H\rightarrow ZZ^*$ (only for M>125 GeV/ c^2)
- Require at least 10 fb⁻¹ of luminosity (2013/2014 ?)

LHC SM Higgs Discovery Potential

- Sensitivity best at m_H=160 GeV/c²:
 - Observation possible with ~1 fb⁻¹ (or improvement of Tevatron limits)
- Much more difficult at low mass (preferred region)
 - Need at least 10 fb⁻¹ to cover full mass range

How do we know what we have found?

- After discovery we need to check it really is the Higgs boson
- Measure it's properties:
 - The mass
 - The spin (very difficult...)
 - The branching ratio into all fermions
 - Verify coupling to mass
 - The total width (very difficult...)
 - Are there invisible decays?
- Check they are consistent with Higgs boson

Mass

Coupling Measurements at LHC

Duehrssen et al hep-ph/0407190

- Measure couplings of Higgs to as many particles as possible
 - H→ZZ
 - H→WW
 - $\blacksquare H \rightarrow \gamma \gamma$
 - H→bb
 - $H \rightarrow \tau \tau$
- And in different production modes:
 - gg → H (tH coupling)
 - WW → H (WH coupling)
- Verifies that Higgs boson couples to mass

Non Standard-Model Higgs Bosons

Higgs in Supersymmetry (MSSM)

- Minimal Supersymmetric Standard Model:g³
 - 2 Higgs-Fields: Parameter tanβ=<H_u>/<H_d>
 - 5 Higgs bosons: h, H, A, H[±]

- Pseudoscalar A
- Scalar H, h
 - Lightest Higgs (h) very similar to SM

MSSM Higgs Selection

$$\Phi$$
 =h/H/A

- pp $\rightarrow \Phi + X \rightarrow \tau \tau + X$:
 - One τ decays to e or μ
 - One τ decays to hadrons or e/μ
 - They should be isolated
 - Efficiency: ~50%
 - Fake rate ~0.1-1%
 - 10-100 times larger than for muons/ electrons

Di-tau Mass reconstruction

- Neutrinos from tau-decay escape:
 - No full mass reconstruction possible
- Use "visible mass":
 - Form mass like quantity: $m_{vis} = m(\tau, e/\mu, E_T)$
 - Good separation between signal and background
- Full mass reconstruction possible in boosted system, i.e. if p_T(τ, τ)>20 GeV:
 - Loose 90% of data statistics though!
 - Best is to use both methods in the future

Di-Tau Higgs Boson Search

Data agree with background prediction

Limits on the MSSM Higgs

- Data agree with background
 - Use to put an upper limit on the cross section
 - Translate into SUSY parameter space using theoretical cross section prediction
 - E.g. exclude tanβ>35 for m_A=140 GeV/c²

MSSM Higgs Bosons at LHC

300 fb⁻¹

- At least one Higgs boson definitely observable <a>(**)
- Often only one Higgs boson observable

Physics Beyond the Standard Model

The Unknown beyond the Standard Model

- Many good reasons to believe there is as yet unknown physics beyond the SM:
 - Dark matter + energy, matter/anti-matter asymmetry, neutrino masses/mixing +many more (see 1st lecture)
- Many possible new particles/theories:
 - Supersymmetry:
 - Many flavours
 - Extra dimensions (G)
 - New gauge groups (Z', W',...)
 - New fermions (e*, t', b', ...)
 - Leptoquarks
- Can show up!
 - As subtle deviations in precision measurements
 - In direct searches for new particles

Supersymmetry (SUSY)

- SM particles have supersymmetric partners:
 - Differ by 1/2 unit in spin
 - Sfermions (squark, selectron, smuon, ...): spin 0
 - gauginos (chargino, neutralino, gluino,...): spin 1/2
- No SUSY particles found as yet:
 - SUSY must be broken: breaking mechanism determines phenomenology
 - More than 100 parameters even in "minimal" models!

What's Nice about SUSY?

- Introduces symmetry between bosons and fermions
- Unifications of forces possible
 - SUSY changes running of couplings
- Dark matter candidate exists:
 - The lightest neutral gaugino
 - Consistent with cosmology data
- No fine-tuning required
 - Radiative corrections to Higgs acquire SUSY corrections
 - Cancellation of fermion and sfermion loops
- Also consistent with precision measurements of M_W and M_{top}
 - But may change relationship between M_W, M_{top} and M_H

SUSY Comes in Many Flavors

- Breaking mechanism determines phenomenology and search strategy at colliders
 - GMSB:
 - Gravitino is the LSP
 - Photon final states likely
 - mSUGRA
 - Neutralino is the LSP
 - Many different final states
 - Common scalar and gaugino masses
 - AMSB
 - Split-SUSY: sfermions very heavy
- R-parity
 - Conserved: Sparticles produced in pairs
 - Yields natural dark matter candidate
 - Not conserved: Sparticles can be produced singly
 - constrained by proton decay if violation in quark sector
 - Could explain neutrino oscillations if violation in lepton sector

Mass Unification in mSUGRA

- Common masses at GUT scale: m₀ and m_{1/2}
 - Evolved via renormalization group equations to lower scales
 - Weakly coupling particles (sleptons, charginos, neutralions) are lightest $_{27}$

A Typical Sparticle Mass Spectrum

Sparticle Cross Sections

SUSY compared to Background

- Cross sections rather low
 - Else would have seen it already!
- Need to suppress background efficiently

Strategy for SUSY Searches

- Minimal Supersymmetric Standard Model (MSSM) has more than 100 parameters
 - Impossible to scan full parameter space
 - Many constraints already from
 - Precision electroweak data
 - Lepton flavour violation
 - Baryon number violation
 - **...**
- Makes no sense to choose random set
 - Use simplified well motivated "benchmark" models
 - Ease comparison between experiments
- Try to make interpretation model independent
 - E.g. not as function of GUT scale SUSY particle masses but versus EWK scale SUSY particle masses
 - Limits can be useful for other models

Generic Squarks and Gluinos

- Squark and Gluino production:
 - Signature: jets and t

Strong interaction => large production cross section

```
for M(g) \approx 300 GeV/c<sup>2</sup>:

1000 event produced/ fb<sup>-1</sup>

for M(g) \approx 500 GeV/c<sup>2</sup>:

1 event produced/ fb<sup>-1</sup>
```

Signature depends on $\widetilde{\mathbf{q}}$ and $\widetilde{\mathbf{g}}$ Masses

- Consider 3 cases:
 - 1. $m(\tilde{g}) < m(\tilde{q})$

 $4 \text{ jets} + E_T^{\text{miss}}$

 $3 \text{ jets} + E_T^{\text{miss}}$

Optimize for different signatures in different scenarios

Selection and Procedure

- Selection:
 - Large missing E_T
 - Due to neutralinos
 - Large H_T
 - $H_T = \sum E_T^{jet}$
 - Large Δφ
 - Between missing E_T and jets and between jets
 - Suppress QCD dijet background due to jet mismeasurements
 - Veto leptons:
 - Reject W/Z+jets, top

- Procedure:
 - Define signal cuts based on background and signal MC studies
 - 2. Select control regions that are sensitive to individual backgrounds
 - 3. Keep data "blind" in signal region until data in control regions are understood
 - 4. Open the blind box!

Missing Energy can be caused by Problems

- Data spectrum contaminated by
 - Noise
 - Cosmic muons showering
 - Beam halo muons showering
- Needs "cleaning up"!
 - track matched to jet
 - electromagnetic energy fraction
 - Removal of hot cells
 - Topological cuts against beam-halo

QCD Dijet Rejection Cut

- Cut on Δφ(jet, E_T^{miss})
- Used to suppress and to understand QCD multi-jet background
 - Extreme test of MC simulation

W+jets, Z+jets and Top background

- Background sources:
 - W/Z+jets, top
 - Suppressed by vetoes:
 - Events with jet with EM fraction>90%
 - Rejects electrons
 - Events with isolated track
 - Rejects muons, taus and electrons
- Define control regions:
 - W/Z+jets, top
 - Make all selection cuts but invert lepton vetoes
 - Gives confidence in those background estimates

A Nice Candidate Event!

But there is no clear signal...

Cross Section Limits

- No excess in data
 - Evaluate upper limit on cross section
 - Find out where it crosses with theory
- Theory has large uncertainty: ~30%
 - Crossing point with theory lower bound ~ represents limit on squark/gluino mass

Squark and Gluino Mass Limits

- Constraints on masses
 - M(g̃)>308 GeV
 - M(q̃)>379 GeV
- Represented in this plane:
 - Rather small model dependence as long as there is R-parity conservation

Exclusion of GUT scale parameters

- Nice interplay of hadron colliders and e⁺e⁻ colliders:
 - Similar sensitivity to same high level theory parameters via very different analyses
 - Tevatron is starting to probe beyond LEP in mSUGRA type models

SUSY at the LHC

- Cross section much higher, e.g.
 - for m(g̃)=400 GeV: σ_{LHC}(g̃g̃)/ σ_{Tevatron}(g̃g̃)≈20,000
 - for m(q̃)=400 GeV: σ_{LHC}(g̃g)/ σ_{Tevatron}(g̃g)≈1,000
 - Since there are a lot more gluons at the LHC (lower x)

- At higher masses more phase space to decay in cascades
 - Results in additional leptons or jets

SUSY at the LHC

Require 4 jets, large missing E_⊤ and 0 or 1 lepton

- "Effective Mass" = sum of p_T of all objects
- Similar and great (!) sensitivity in both modes

SUSY Discovery Reach

- With 1 fb⁻¹:
 - Sensitive to m(g̃)≤1000 GeV/c²
- With 10 fb⁻¹:
 - Sensitive to m(g)≤1800 GeV/c²
- Amazing potential!
 - If data can be understood
 - If current MC predictions are ≈ok

SUSY Searches at 7 TeV

 Requires about 100 pb⁻¹ for discovery of 400 GeV gluinos/squarks

What kind of SUSY is it?

- We will need to do SUSY spectroscopy!
 - Rate of 0 vs 1 vs 2 vs n leptons
 - Sensitive to neutralino masses
 - Rate of tau-leptons:
 - Sensitive to tanβ
 - Kinematic edges
 - obtain mass values
 - Detailed examination of inclusive spectra
 - **....**

That would be my dream scenario! It's where the real fun starts!!

Conclusions of Higgs and SUSY

- Direct searches for Higgs boson
 - Tevatron excludes 163-166 GeV based on WW
 - LHC will rival Tevatron at high mass with 1 fb⁻¹
 - Low mass Higgs will need 10 fb⁻¹ or more
- Supersymmetry is most promising theory of physics beyond the Standard Model
 - Current limit: m(g)>310 GeV
 - No signs of it in other searches either
 - LHC will extend beyond Tevatron already with 100 pb⁻¹ at 7 TeV (if detectors understood well enough)
- If SUSY is to solve the problems in our theory it will be found at the LHC